Slide 2 #### Overview: The Key Roles of Cell Division - The ability of organisms to reproduce best distinguishes living things from nonliving matter - In unicellular organisms, division of one cell reproduces the entire organism - Most cell division results in daughter cells with identical genetic information, DNA - A special type of division produces nonidentical daughter cells (gametes, or sperm and egg cells) - Prokaryotes (bacteria and archaea) reproduce by a type of cell division called **binary fission** Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming | In binary
fission, the
chromosome
replicates
(beginning at
the origin of
replication),
and the two
daughter
chromosomes
actively move
apart | Origin of replication E. coll cell Plasma membrane Bacterial chromosome of origin | |--|--| | | | | |
 | |---|------| | | | | | | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | |
 | | | | | | | | |
 | | | | | _ | | | |
 | | | | Slide 4 |
 |
 |
 | | |------|------|------|--| |
 |
 |
 | | |
 | |
 | | |
 | |
 | | |
 |
 | | | | |
 |
 |
 | | |
 |
 |
 | | |
 | |
 | | |
 | |
 |
 |
 |
 | | |
 |
 |
 | | | | | | | #### The Evolution of Mitosis - Since prokaryotes evolved before eukaryotes, mitosis probably evolved from binary fission - Certain protists exhibit types of cell division that seem intermediate between binary fission and mitosis mid C 2000 Barrier Education Law and Education Barrier Barrier Commission # Slide 8 |
 |
 |
 | | |------|------|------|---| | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | | | | | | | |
 |
 |
 | _ | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | | | | | | | |
 |
 |
 | _ | | | | | | | | | | | | | | | | |
 |
 |
 | _ | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | Slide 10 # Slide 14 | •In animal cells, cytokinesis or
cleavage, forming a cleavage | | |--|--| | Character former fo | Variable Wat of Superior Conference Superi | | (a) Cleavage of an animal cell (SEM) | (b) Cell plate formation in a plant cell (TEM) | ### Slide 17 Concept 12.3: The eukaryotic cell cycle is regulated by a molecular control system - The frequency of cell division varies with the type of cell - These cell cycle differences result from regulation at the molecular level - The sequential events of the cell cycle are directed by a distinct cell cycle control system, which is similar to a clock - The cell cycle control system is regulated by both internal and external controls Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming | _ | |-------| | | |
_ | | | |
 | | | |
_ | | | |
 | | | | | | | | | |
_ | | | | _ | | | |
_ | | | |
 | | | |
 | | | |
_ | | | |
_ | | | | | | | | | | _ | | | |
_ | | | |
 | | | |
_ | | | |
_ | | | | | - $\bullet\,$ For many cells, the G_1 checkpoint seems to be the most important one - If a cell receives a go-ahead signal at the G₁ checkpoint, it will usually complete the S, G₂, and M phases and divide - If the cell does not receive the go-ahead signal, it will exit the cycle, switching into a nondividing state called the ${\bf G_0}$ **phase** opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings #### Slide 20 ### Slide 21 The Cell Cycle Clock: Cyclins and Cyclin-Dependent Kinases - Two types of regulatory proteins are involved in cell cycle control: cyclins and cyclindependent kinases (Cdks) - The activity of cyclins and Cdks fluctuates during the cell cycle - MPF (maturation-promoting factor) is a cyclin-Cdk complex that triggers a cell's passage past the G₂ checkpoint into the M phase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming |
 |
 | |------|------| | | | |
 |
 | | | | | | | | |
 | | | | | | | | | | |
 | | | | | |
 | | | | | |
 |
 | | | | |
 | | | | | | | | | | | | | | |
 |
 | | | | ### Slide 23 Stop and Go Signs: Internal and External Signals at the Checkpoints - An example of an internal signal is that kinetochores not attached to spindle microtubules send a molecular signal that delays anaphase - Some external signals are **growth factors**, proteins released by certain cells that stimulate other cells to divide - For example, platelet-derived growth factor (PDGF) stimulates the division of human fibroblast cells in culture pyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Camming # Slide 24 - Another example of external signals is densitydependent inhibition, in which crowded cells stop dividing - Most animal cells also exhibit anchorage dependence, in which they must be attached to a substratum in order to divide Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming | | |
 | | | |--|-------|------|------|--|
 |
 |
 | | | | | | | | | | | | | | | |
 |
 |
 |
_ |
 |
 | | | | | | | | | | | | | | | | |
 |
 |
 |
 |
 |
 |
 |
_ |
 | | | | | | | | | | | | | | | | |
 |
 |
 |
 |
 |
 | | | | | | | | | | | | | | | |
 |
 |
 |
_ |
 |
 | | | | | | | | | | | | | | | | |
 |
 |
 |
 | | | | | | | | | | | | | | | | |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 | | | | | | | | | | | | | | | | _ |
 |
 | | | | | | | | | | | | | |