

Slide 2

Overview: The Key Roles of Cell Division

- The ability of organisms to reproduce best distinguishes living things from nonliving matter
- In unicellular organisms, division of one cell reproduces the entire organism
- Most cell division results in daughter cells with identical genetic information, DNA
- A special type of division produces nonidentical daughter cells (gametes, or sperm and egg cells)
- Prokaryotes (bacteria and archaea) reproduce by a type of cell division called **binary fission**

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

In binary fission, the chromosome replicates (beginning at the origin of replication), and the two daughter chromosomes actively move apart	Origin of replication E. coll cell Plasma membrane Bacterial chromosome of origin

_	

Slide 4

The Evolution of Mitosis

- Since prokaryotes evolved before eukaryotes, mitosis probably evolved from binary fission
- Certain protists exhibit types of cell division that seem intermediate between binary fission and mitosis

mid C 2000 Barrier Education Law and Education Barrier Barrier Commission

Slide 8

 	 	 	_
 	 	 	_
 	 	 	_

Slide 10

Slide 14

•In animal cells, cytokinesis or cleavage, forming a cleavage	
Character former Character fo	Variable Wat of Superior Conference of Superi
(a) Cleavage of an animal cell (SEM)	(b) Cell plate formation in a plant cell (TEM)

Slide 17

Concept 12.3: The eukaryotic cell cycle is regulated by a molecular control system

- The frequency of cell division varies with the type of cell
- These cell cycle differences result from regulation at the molecular level
- The sequential events of the cell cycle are directed by a distinct cell cycle control system, which is similar to a clock
- The cell cycle control system is regulated by both internal and external controls

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

_
 _
 _
 _
_
 _
 _
 _
_
 _
 _
 _

- $\bullet\,$ For many cells, the G_1 checkpoint seems to be the most important one
- If a cell receives a go-ahead signal at the G₁ checkpoint, it will usually complete the S, G₂, and M phases and divide
- If the cell does not receive the go-ahead signal, it will exit the cycle, switching into a nondividing state called the ${\bf G_0}$ **phase**

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 20

Slide 21

The Cell Cycle Clock: Cyclins and Cyclin-Dependent Kinases

- Two types of regulatory proteins are involved in cell cycle control: cyclins and cyclindependent kinases (Cdks)
- The activity of cyclins and Cdks fluctuates during the cell cycle
- MPF (maturation-promoting factor) is a cyclin-Cdk complex that triggers a cell's passage past the G₂ checkpoint into the M phase

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

Slide 23

Stop and Go Signs: Internal and External Signals at the Checkpoints

- An example of an internal signal is that kinetochores not attached to spindle microtubules send a molecular signal that delays anaphase
- Some external signals are **growth factors**, proteins released by certain cells that stimulate other cells to divide
- For example, platelet-derived growth factor (PDGF) stimulates the division of human fibroblast cells in culture

pyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Camming

Slide 24

- Another example of external signals is densitydependent inhibition, in which crowded cells stop dividing
- Most animal cells also exhibit anchorage dependence, in which they must be attached to a substratum in order to divide

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

	 _	 	 	
	 _	 		
	 _	 	 	
	_	 	 	